Multisite versus multiorbital Coulomb correlations studied within finite-temperature exact diagonalization dynamical mean-field theory
نویسندگان
چکیده
The influence of short-range Coulomb correlations on the Mott transition in the single-band Hubbard model at half filling is studied within cellular dynamical mean-field theory for square and triangular lattices. Finitetemperature exact diagonalization is used to investigate correlations within two-, three-, and four-site clusters. Transforming the nonlocal self-energy from a site basis to a molecular-orbital basis, we focus on the interorbital charge transfer between these cluster molecular orbitals in the vicinity of the Mott transition. In all cases studied, the charge transfer is found to be small, indicating weak Coulomb-induced orbital polarization despite sizable level splitting between orbitals. These results demonstrate that all cluster molecular orbitals take part in the Mott transition and that the insulating gap opens simultaneously across the entire Fermi surface. Thus, at half filling we do not find orbital-selective Mott transitions or a combination of band filling and Mott transition in different orbitals. Nevertheless, the approach toward the transition differs greatly between cluster orbitals, giving rise to a pronounced momentum variation along the Fermi surface, in agreement with previous works. The near absence of Coulomb-induced orbital polarization in these clusters differs qualitatively from single-site multiorbital studies of several transition-metal oxides, where the Mott phase exhibits nearly complete orbital polarization as a result of a correlation driven enhancement of the crystal-field splitting. The strong singleparticle coupling among cluster orbitals in the single-band case is identified as the source of this difference.
منابع مشابه
Correlation-induced spin freezing transition in FeSe: A dynamical mean field study
The effect of local Coulomb interactions on the electronic properties of FeSe is explored within dynamical mean field theory combined with finite-temperature exact diagonalization. The low-energy scattering rate is shown to exhibit non-Fermi-liquid behavior caused by the formation of local moments. Fermi-liquid properties are restored at large electron doping. In contrast, FeAsLaO is shown to b...
متن کاملSingle Mott transition in the multiorbital Hubbard model
The Mott transition in a multiorbital Hubbard model involving subbands of different widths is studied within the dynamical mean-field theory. Using the iterated perturbation theory for the quantum impurity problem it is shown that at low temperatures interorbital Coulomb interactions give rise to a single first-order transition rather than a sequence of orbital selective transitions. Impurity c...
متن کاملCoulomb correlations in the honeycomb lattice: Role of translation symmetry
The effect of Coulomb correlations in the half-filled Hubbard model of the honeycomb lattice is studied within the dynamical cluster approximation (DCA) combined with exact diagonalization (ED) and continuous-time quantum Monte Carlo (QMC), for unit cells consisting of six-site rings. The important difference between this approach and the previously employed cluster dynamical mean-field theory ...
متن کاملDynamical Mean Field Theory of the Antiferromagnetic Metal to Antiferromagnetic Insulator Transition
We study the zero temperature antiferromagnetic metal to antiferromagnetic insulator transition using dynamical mean field theory and exact diagonalization methods. We find two qualitatively different behaviors depending on the degree of magnetic correlations. For strong correlations combined with magnetic frustration, the transition can be described in terms of a renormalized Slater theory, wi...
متن کاملStability of a metallic state in the two-orbital Hubbard model
Electron correlations in the two-orbital Hubbard model at half-filling are investigated by combining dynamical mean field theory with the exact diagonalization method. We systematically study how the interplay of the intraand inter-band Coulomb interactions, together with the Hund coupling, affects the metal-insulator transition. It is found that if the intraand interband Coulomb interactions a...
متن کامل